Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fire Saf J ; 1012018.
Artigo em Inglês | MEDLINE | ID: mdl-30983690

RESUMO

This paper provides a report of the discussions held at the first workshop on Measurement and Computation of Fire Phenomena (MaCFP) on June 10-11 2017. The first MaCFP work-shop was both a technical meeting for the gas phase subgroup and a planning meeting for the condensed phase subgroup. The gas phase subgroup reported on a first suite of experimental- computational comparisons corresponding to an initial list of target experiments. The initial list of target experiments identifies a series of benchmark configurations with databases deemed suitable for validation of fire models based on a Computational Fluid Dynamics approach. The simulations presented at the first MaCFP workshop feature fine grid resolution at the millimeter- or centimeter- scale: these simulations allow an evaluation of the performance of fire models under high-resolution conditions in which the impact of numerical errors is reduced and many of the discrepancies between experimental data and computational results may be attributed to modeling errors. The experimental-computational comparisons are archived on the MaCFP repository [1]. Furthermore, the condensed phase subgroup presented a review of the main issues associated with measurements and modeling of pyrolysis phenomena. Overall, the first workshop provided an illustration of the potential of MaCFP in providing a response to the general need for greater levels of integration and coordination in fire research, and specifically to the particular needs of model validation.

2.
Fire Saf J ; 90: 72-85, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28785126

RESUMO

This work seeks to support the validation of large eddy simulation models used to simulate fire suppression. The emphasis in the present study is on the prediction of flame extinction and the prevention of spurious reignition using a fast chemistry, mixing-controlled combustion model applicable to realistic fire scenarios of engineering interest. The configuration provides a buoyant, turbulent methane diffusion flame within a controlled co-flowing oxidizer. The oxidizer allows for the supply of a mixture of air and nitrogen, including conditions for which oxygen-dilution in the oxidizer leads to flame extinction. Measurements to support model validation include local profiles of thermocouple temperature and oxygen mole fraction, global combustion efficiency, and the limiting oxygen index. The present study evaluates the performance of critical-flame-temperature-based extinction and reignition models using the Fire Dynamics Simulator, an open-source fire dynamics solver. Alternate model cases are explored, each offering a unique treatment of extinction and reignition. Comparisons between simulated results and experimental measurements are used to evaluate the capability of these models to accurately describe flame extinction. Of the considered cases, those that include provisions to prevent spurious reignition show excellent agreement with measured data, whereas a baseline case lacking explicit reignition treatment fails to predict extinction.

3.
Orthod Craniofac Res ; 17(2): 92-105, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24387797

RESUMO

OBJECTIVES: To determine the role of Msx2 in craniofacial morphology and growth, we used a mouse model and performed a quantitative morphological characterization of the Msx2 (-/-) and the Msx2 (+/-) phenotype using a 2D cephalometric analysis applied on micrographs. MATERIALS AND METHODS: Forty-four three-and-a-half-month-old female CD1 mice were divided into the following three groups: Msx2 (+/+) (n = 16), Msx2 (+/-) (n = 16), and Msx2 (-/-) (n = 12). Profile radiographs were scanned. Modified cephalometric analysis was performed to compare the three groups. RESULTS: Compared with the wild-type mice, the Msx2 (-/-) mutant mice presented an overall craniofacial size decrease and modifications of the shape of the different parts of the craniofacial skeleton, namely the neurocranium, the viscerocranium, the mandible, and the teeth. In particular, dysmorphologies were seen in the cochlear apparatus and the teeth (taurodontism, reduced incisor curvature). Finally contrary to previous published results, we were able to record a specific phenotype of the Msx2 (+/-) mice with this methodology. This Msx2 (+/-) mouse phenotype was not intermediate between the Msx2 (-/-) and the wild-type animals. CONCLUSION: Msx2 plays an important role in craniofacial morphogenesis and growth because almost all craniofacial structures were affected in the Msx2(-/-) mice including both intramembranous and endochondral bones, the cochlear apparatus, and the teeth. In addition, Msx2 haploinsufficiency involves a specific phenotype with subtle craniofacial structures modifications compared with human mutations.


Assuntos
Cefalometria/métodos , Anormalidades Craniofaciais/genética , Proteínas de Homeodomínio/genética , Mutação/genética , Animais , Cóclea/anormalidades , Anormalidades Craniofaciais/diagnóstico , Cavidade Pulpar/anormalidades , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Genótipo , Haploinsuficiência/genética , Heterozigoto , Humanos , Incisivo/anormalidades , Mandíbula/anormalidades , Maxila/anormalidades , Desenvolvimento Maxilofacial/genética , Camundongos , Microrradiografia/métodos , Fenótipo , Crânio/anormalidades
4.
Int J Comput Vis ; 103(1): 22-59, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23956495

RESUMO

This paper proposes an original approach for the statistical analysis of longitudinal shape data. The proposed method allows the characterization of typical growth patterns and subject-specific shape changes in repeated time-series observations of several subjects. This can be seen as the extension of usual longitudinal statistics of scalar measurements to high-dimensional shape or image data. The method is based on the estimation of continuous subject-specific growth trajectories and the comparison of such temporal shape changes across subjects. Differences between growth trajectories are decomposed into morphological deformations, which account for shape changes independent of the time, and time warps, which account for different rates of shape changes over time. Given a longitudinal shape data set, we estimate a mean growth scenario representative of the population, and the variations of this scenario both in terms of shape changes and in terms of change in growth speed. Then, intrinsic statistics are derived in the space of spatiotemporal deformations, which characterize the typical variations in shape and in growth speed within the studied population. They can be used to detect systematic developmental delays across subjects. In the context of neuroscience, we apply this method to analyze the differences in the growth of the hippocampus in children diagnosed with autism, developmental delays and in controls. Result suggest that group differences may be better characterized by a different speed of maturation rather than shape differences at a given age. In the context of anthropology, we assess the differences in the typical growth of the endocranium between chimpanzees and bonobos. We take advantage of this study to show the robustness of the method with respect to change of parameters and perturbation of the age estimates.

5.
J Microsc ; 242(1): 70-85, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21128940

RESUMO

The conventional approach for microscopic 3D cellular imaging is based on axial through-stack image series which has some significant limitations such as anisotropic resolution and axial aberration. To overcome these drawbacks, we have recently introduced an alternative approach based on micro-rotation image series. Unfortunately, this new technique suffers from a huge burden of computation that makes its use quite difficult for current applications. To address these problems we propose a new imaging strategy called bi-protocol, which consists of coupling micro-rotation acquisition and conventional z-stack acquisition. We experimentally prove bi-protocol 3D reconstruction produces similar quality to that of pure micro-rotation, but offers the advantage of reduced computation burden because it uses the z-stack volume to accelerate the registration of the micro-rotation images.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Confocal , Algoritmos , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Rotação
6.
J Microsc ; 233(3): 404-16, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19250461

RESUMO

Recently, micro-rotation confocal microscopy has enabled the acquisition of a sequence of micro-rotated images of nonadherent living cells obtained during a partially controlled rotation movement of the cell through the focal plane. Although we are now able to estimate the three-dimensional position of every optical section with respect to the cell frame, the reconstruction of the cell from the positioned micro-rotated images remains a last task that this paper addresses. This is not strictly an interpolation problem since a micro-rotated image is a convoluted two-dimensional map of a three-dimensional reality. It is rather a 'reconstruction from projection' problem where the term projection is associated to the PSF of the deconvolution process. Micro-rotation microscopy has a specific difficulty. It does not yield a complete coverage of the volume. In this paper, experiments illustrate the ability of the classical EM algorithm to deconvolve efficiently cell volume despite of the incomplete coverage. This cell reconstruction method is compared to a kernel-based method of interpolation, which does not take account explicitly the point-spread-function (PSF). It is also compared to the standard volume obtained from a conventional z-stack. Our results suggest that deconvolution of micro-rotation image series opens some exciting new avenues for further analysis, ultimately laying the way towards establishing an enhanced resolution 3D light microscopy.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Rotação , Algoritmos , Adesão Celular , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Humanos , Aumento da Imagem , Laminas/ultraestrutura
7.
Neuroimage ; 23 Suppl 1: S161-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15501085

RESUMO

In this paper, we present a linear setting for statistical analysis of shape and an optimization approach based on a recent derivation of a conservation of momentum law for the geodesics of diffeomorphic flow. Once a template is fixed, the space of initial momentum becomes an appropriate space for studying shape via geodesic flow since the flow at any point along the geodesic is completely determined by the momentum at the origin through geodesic shooting equations. The space of initial momentum provides a linear representation of the nonlinear diffeomorphic shape space in which linear statistical analysis can be applied. Specializing to the landmark matching problem of Computational Anatomy, we derive an algorithm for solving the variational problem with respect to the initial momentum and demonstrate principal component analysis (PCA) in this setting with three-dimensional face and hippocampus databases.


Assuntos
Anatomia/estatística & dados numéricos , Algoritmos , Biologia Computacional , Bases de Dados Factuais , Face/anatomia & histologia , Humanos , Modelos Lineares , Modelos Anatômicos , Modelos Estatísticos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...